资源类型

期刊论文 320

会议视频 4

年份

2023 37

2022 37

2021 33

2020 18

2019 25

2018 19

2017 19

2016 16

2015 13

2014 9

2013 12

2012 9

2011 8

2010 10

2009 8

2008 17

2007 12

2006 5

2004 1

2002 1

展开 ︾

关键词

复合材料 5

PP 2

催化剂 2

力学性能 2

复合镀层 2

组合梁 2

Au/Ti双功能催化剂 1

BMI树脂 1

CCS 1

CO2 加氢 1

CO2分离 1

EFP 1

H2有效利用率 1

HDPE 1

K 助剂 1

Mn 助剂 1

Pt–Ba–Ce/γ-Al2O3 催化剂,物理化学性质,NOx存储和还原,NOx 排放,H2 还原剂 1

SOFC 1

Si/Al 比值 1

展开 ︾

检索范围:

排序: 展示方式:

One-step synthesis of

Kuiyi YOU, Fangfang ZHAO, Xueyan LONG, Pingle LIU, Qiuhong AI, Hean LUO

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 389-394 doi: 10.1007/s11705-012-1218-0

摘要: A simple and efficient approach for the synthesis of -caprolactam via the liquid phase nitrosation of cyclohexane and nitrosyl sulfuric acid in the presence of concentrated sulfuric acid has been developed. A series of novel AlVPO composites were prepared by an impregnation method and the composites were then employed to catalyze the nitrosation reaction of cyclohexane and nitrosyl sulfuric acid. Compared to the reaction using fuming sulfuric acid, the selectivity for the desired product was significantly improved using this one-step catalytic process. This method affords a shortcut to prepare -caprolactam and its analogs from cyclohexane.

关键词: cyclohexane     ?-caprolactam     AlVPO composite catalysts     one-step synthesis     concentrated sulfuric acid    

Electrochemical CO reduction to C products over CuZn intermetallic catalysts synthesized by electrodeposition

《能源前沿(英文)》 doi: 10.1007/s11708-023-0898-0

摘要: Electrocatalytic CO2 reduction (ECR) offers an attractive approach to realizing carbon neutrality and producing valuable chemicals and fuels using CO2 as the feedstock. However, the lack of cost-effective electrocatalysts with better performances has seriously hindered its application. Herein, a one-step co-electrodeposition method was used to introduce Zn, a metal with weak *CO binding energy, into Cu to form Cu/Zn intermetallic catalysts (Cu/Zn IMCs). It was shown that, using an H-cell, the high Faradaic efficiency of C2+ hydrocarbons/alcohols (FEC2+) could be achieved in ECR by adjusting the surface metal components and the applied potential. In suitable conditions, FEC2+ and current density could be as high as 75% and 40 mA/cm2, respectively. Compared with the Cu catalyst, the Cu/Zn IMCs have a lower interfacial charge transfer resistance and a larger electrochemically active surface area (ECSA), which accelerate the reaction. Moreover, the *CO formed on Zn sites can move to Cu sites due to its weak binding with *CO, and thus enhance the C–C coupling on the Cu surface to form C2+ products.

关键词: carbon dioxide electroreduction     electrochemistry     co-electrodeposition     intermetallic catalysts     value-added chemicals    

Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton

《能源前沿(英文)》 doi: 10.1007/s11708-023-0907-3

摘要: Platinum (Pt)-based materials are still the most efficient and practical catalysts to drive the sluggish kinetics of cathodic oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, their catalysis and stability performance still need to be further improved in terms of corrosion of both carbon support and Pt catalyst particles as well as Pt loading reduction. Based on the developed synthetic strategies of alloying/nanostructuring Pt particles and modifying/innovating supports in developing conventional Pt-based catalysts, Pt single-atom catalysts (Pt SACs) as the recently burgeoning hot materials with a potential to achieve the maximum utilization of Pt are comprehensively reviewed in this paper. The design thoughts and synthesis of various isolated, alloyed, and nanoparticle-contained Pt SACs are summarized. The single-atomic Pt coordinating with non-metals and alloying with metals as well as the metal-support interactions of Pt single-atoms with carbon/non-carbon supports are emphasized in terms of the ORR activity and stability of the catalysts. To advance further research and development of Pt SACs for viable implementation in PEMFCs, various technical challenges and several potential research directions are outlined.

关键词: oxygen reduction electrocatalysis     Pt single-atom catalysts     conventional Pt-based catalysts     design thoughts and synthesis     metal-support interactions    

Promising approach for preparing metallic single-atom catalysts: electrochemical deposition

《能源前沿(英文)》 2022年 第16卷 第4期   页码 537-541 doi: 10.1007/s11708-022-0837-5

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

《能源前沿(英文)》 2017年 第11卷 第3期   页码 286-298 doi: 10.1007/s11708-017-0477-3

摘要: To significantly reduce the cost of proton exchange membrane fuel cells, platinum-group metal (PGM)-free cathode catalysts are highly desirable. Current M-N-C (M: Fe, Co or Mn) catalysts are considered the most promising due to their encouraging performance. The challenge thus has been their stability under acidic conditions, which has hindered their use for any practical applications. In this review, based on the author’s research experience in the field for more than 10 years, current challenges and possible solutions to overcome these problems were discussed. The current Edisonian approach (i.e., trial and error) to developing PGM-free catalysts has been ineffective in achieving revolutionary breakthroughs. Novel synthesis techniques based on a more methodological approach will enable atomic control and allow us to achieve optimal electronic and geometric structures for active sites uniformly dispersed within the 3D architectures. Structural and chemical controlled precursors such as metal-organic frameworks are highly desirable for making catalysts with an increased density of active sites and strengthening local bonding structures among N, C and metals. Advanced electrochemical and physical characterization, such as electron microscopy and X-ray absorption spectroscopy should be combined with first principle density functional theory (DFT) calculations to fully elucidate the active site structures.

关键词: oxygen reduction     fuel cells     cathode     nonprecious metal catalysts     carbon nanocomposites    

Selective preparation for biofuels and high value chemicals based on biochar catalysts

《能源前沿(英文)》 2023年 第17卷 第5期   页码 635-653 doi: 10.1007/s11708-023-0878-4

摘要: The reuse of biomass wastes is crucial toward today’s energy and environmental crisis, among which, biomass-based biochar as catalysts for biofuel and high value chemical production is one of the most clean and economical solutions. In this paper, the recent advances in biofuels and high chemicals for selective production based on biochar catalysts from different biomass wastes are critically summarized. The topics mainly include the modification of biochar catalysts, the preparation of energy products, and the mechanisms of other high-value products. Suitable biochar catalysts can enhance the yield of biofuels and higher-value chemicals. Especially, the feedstock and reaction conditions of biochar catalyst, which affect the efficiency of energy products, have been the focus of recent attentions. Mechanism studies based on biochar catalysts will be helpful to the controlled products. Therefore, the design and advancement of the biochar catalyst based on mechanism research will be beneficial to increase biofuels and the conversion efficiency of chemicals into biomass. The advanced design of biochar catalysts and optimization of operational conditions based on the biomass properties are vital for the selective production of high-value chemicals and biofuels. This paper identifies the latest preparation for energy products and other high-value chemicals based on biochar catalysts progresses and offers insights into improving the yield of high selectivity for products as well as the high recyclability and low toxicity to the environment in future applications.

关键词: biomass     biochar catalysts     biofuels     high chemicals    

Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1649-1676 doi: 10.1007/s11705-023-2324-x

摘要: With the rapid development of industry, volatile organic compounds (VOCs) are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health. Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions. This review first introduces the hazards of VOCs, their treatment technologies, and summarizes the treatment mechanism issues. Next, the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded, with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications, and on the treatment of different VOCs. The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed. This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.

关键词: perovskite oxides     volatile organic compounds     catalytic combustion     reaction mechanism    

Enhanced activity of bimetallic Fe-Cu catalysts supported on ceria toward water gas shift reaction: synergistic

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1962-1972 doi: 10.1007/s11705-023-2359-z

摘要: Within the “hydrogen chain”, the high-temperature water gas shift reaction represents a key step to improve the H2 yield and adjust the H2/COx ratio to fit the constraints of downstream processes. Despite the commercial application of the high-temperature water gas shift, novel catalysts characterized by higher intrinsic activity (especially at low temperatures), good thermal stability, and no chromium content are needed. In this work, we propose bimetallic iron-copper catalysts supported on ceria, characterized by low active phase content (iron oxide + copper oxide < 5 wt %). Fresh and used samples were characterized by inductively coupled plasma mass spectrometry, X-ray diffraction, nitrogen physisorption, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, and temperature programmed reduction in hydrogen to relate physicochemical features and catalytic activity. The sample with iron/copper ≈ 1 and 4 wt % active phase content showed the best catalytic properties in terms of turnover frequency, no methane formation, and stability. Its unique properties were due to both strong iron-copper interaction and strong metal-support interaction, leading to outstanding redox behavior.

关键词: water gas shift     iron     copper     bimetallic catalysts     ceria     hydrogen    

Technological development and engineering applications of novel steel-concrete composite structures

Jianguo NIE, Jiaji WANG, Shuangke GOU, Yaoyu ZHU, Jiansheng FAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 1-14 doi: 10.1007/s11709-019-0514-x

摘要:

In view of China’s development trend of green building and building industrialization, based on the emerging requirements of the structural engineering community, the development and proposition of novel resource-saving high-performance steel-concrete composite structural systems with adequate safety and durability has become a kernel development trend in structural engineering. This paper provides a state of the art review of China’s cutting-edge research and technologies in steel-concrete composite structures in recent years, including the building engineering, the bridge engineering and the special engineering. This paper summarizes the technical principles and applications of the long-span bi-directional composite structures, the long-span composite transfer structures, the comprehensive crack control technique based on uplift-restricted and slip-permitted (URSP) connectors, the steel plate concrete composite (SPCC) strengthen technique, and the innovative composite joints. By improving and revising traditional structure types, the comprehensive superiority of steel-concrete composite structures is well elicited. The research results also indicate that the high-performance steel-concrete composite structures have a promising popularizing prospect in the future.

关键词: high-performance composite structure     bi-directional composite     composite transfer     uplift-restricted and slip-permitted connectors     steel plate concrete composite strengthen    

Deep eutectic solvent inclusions for high- composite dielectric elastomers

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 996-1002 doi: 10.1007/s11705-022-2138-2

摘要: Recent advances in novel electroactive devices have placed new requirements on material development. High-performance dielectric elastomers with good mechanical stretchability and high dielectric constant are under high demand. However, the current strategy for fabricating these materials suffers from high cost or low thermal stability, which greatly hinders large-scale industrial production. Herein, we have successfully developed a novel strategy for improving the dielectric constant of polymeric elastomers via deep eutectic solvent inclusion by taking advantage of the low cost, convenient and environmentally benign synthesis process and high ionic conductivity from deep eutectic solvents. The as-prepared composite elastomers showed good stretchability and a greatly enhanced dielectric constant with a negligible increase in dielectric dissipation. Moreover, we have proven the universality of our strategy by using different types of deep eutectic solvents. It is believed that low-cost, easy-synthesis and environmentally friendly deep eutectic solvents including composite elastomers are highly suitable for large-scale industrial production and can greatly broaden the application fields of dielectric elastomers.

关键词: composite materials     deep eutectic solvent     dielectric elastomer     high dielectric constant    

NiBO (B = Mn or Co) catalysts for NH-SCR of NO at low-temperature in microwave field

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1696-y

摘要:

● Microwave-assisted catalytic NH3-SCR reaction over spinel oxides is carried out.

关键词: Microwave field     Spinel oxides     NOx     Selective catalytic reduction    

An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1518-7

摘要:

• Antibiotic azithromycin employed in graphite electrode for EAB biosensor.

关键词: AZM@GP composite electrode     EAB-biosensor     Water quality early-warning    

Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1427-1443 doi: 10.1007/s11705-021-2108-0

摘要: The dye industry produces a large amount of hazardous wastewater every day worldwide, which brings potential threaten to the global environment. As an excellent method for removal of water chroma and chemical oxygen demand, electrocatalytic methods are currently widely used in the treatment of dye wastewater. The selection and preparation of electrode materials and electrocatalysts play an important role on the electrocatalytic treatment. The aim of this paper is to introduce the most excellent high-efficiency electrode materials and electrocatalysts in the field of dye wastewater treatment. Many electrode materials such as metal electrode materials, boron-doped diamond anode materials and three-dimensional electrode are introduced in detail. Besides, the mechanism of electrocatalytic oxidation is summarized. The composite treatment of active electrode and electrocatalyst are extensively examined. Finally, the progress of photo-assisted electrocatalytic methods of dye wastewater and the catalysts are described.

关键词: electrocatalytic oxidation     electrode     electrocatalysis     dye wastewater    

Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane

Hui LI, Yuanbin SHE, Tao WANG

《化学科学与工程前沿(英文)》 2012年 第6卷 第3期   页码 356-368 doi: 10.1007/s11705-012-0903-3

摘要: The latest progress and developments in catalysts for the oxidation of cyclohexane are reviewed. Catalytic systems for the oxidation of cyclohexane including metal supported, metal oxides, molecular sieves, metal substituted polyoxometalates, photocatalysts, organocatalysts, Gif systems, metal-organic catalysts and metalloporphyrins are discussed with a particular emphasis on metalloporphyrin catalytic systems. The advantages and disadvantages of these methods are summarized and analyzed. Finally, the development trends in the oxidation technology of cyclohexane are examined.

关键词: cyclohexane     liquid-phase oxidation     catalysis    

Structural optimization of filament wound composite pipes

Roham RAFIEE; Reza SHAHZADI; Hossein SPERESP

《结构与土木工程前沿(英文)》 2022年 第16卷 第8期   页码 1056-1069 doi: 10.1007/s11709-022-0868-3

摘要: An optimization procedure is developed for obtaining optimal structural design of filament wound composite pipes with minimum cost utilized in pressurized water and waste-water pipelines. First, the short-term and long-term design constraints dictated by international standards are identified. Then, proper computational tools are developed for predicting the structural properties of the composite pipes based on the design architecture of layers. The developed computational tools are validated by relying on experimental analysis. Then, an integrated design-optimization process is developed to minimize the price as the main objective, taking into account design requirements and manufacturing limitations as the constraints and treating lay-up sequence, fiber volume fraction, winding angle, and the number of total layers as design variables. The developed method is implemented in various case studies, and the results are presented and discussed.

关键词: composite pipes     optimization     experimental validation     computational modeling     filament winding    

标题 作者 时间 类型 操作

One-step synthesis of

Kuiyi YOU, Fangfang ZHAO, Xueyan LONG, Pingle LIU, Qiuhong AI, Hean LUO

期刊论文

Electrochemical CO reduction to C products over CuZn intermetallic catalysts synthesized by electrodeposition

期刊论文

Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton

期刊论文

Promising approach for preparing metallic single-atom catalysts: electrochemical deposition

期刊论文

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

期刊论文

Selective preparation for biofuels and high value chemicals based on biochar catalysts

期刊论文

Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review

期刊论文

Enhanced activity of bimetallic Fe-Cu catalysts supported on ceria toward water gas shift reaction: synergistic

期刊论文

Technological development and engineering applications of novel steel-concrete composite structures

Jianguo NIE, Jiaji WANG, Shuangke GOU, Yaoyu ZHU, Jiansheng FAN

期刊论文

Deep eutectic solvent inclusions for high- composite dielectric elastomers

期刊论文

NiBO (B = Mn or Co) catalysts for NH-SCR of NO at low-temperature in microwave field

期刊论文

An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor

期刊论文

Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater

期刊论文

Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane

Hui LI, Yuanbin SHE, Tao WANG

期刊论文

Structural optimization of filament wound composite pipes

Roham RAFIEE; Reza SHAHZADI; Hossein SPERESP

期刊论文